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Implicit Function Modeling of
Solidification in Metal Castings

Solidification of metal castings can be modeled by an implicit real-valued function

whose behavior is determined by physical parameters prescribed on the boundary of
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a casting. We show how to construct such functions using theory of R-functions for
two-dimensional castings represented by their boundaries. The parameterized form

of the constructed functions is convenient for studying, controlling, and optimizing
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their behavior in terms of the physical parameters specified on the boundary of the
casting. The proposed approach can also be used for modeling multiple cavities in

a same sand mold, generalizes to three-dimensional castings, and is applicable to
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1 Introduction

1.1 Physical Aspects of the Casting Process. After be-
ing delivered into the casting cavity molten metal assumes the
configuration of the latter and proceeds to cool. Upon reaching
the liquidus temperature the alloy starts to solidify. Solidifica-
tion rate characterizes the increasing volume of the solid phase
with time and depends on the heat transfer rate. The outer shell
skin of the mold forms during this time, displaying a tendency
towards chemical heterogeneity, development of casting shrink-
age as well as surface layer formation. Upon completion of
cooling the casting should have a uniform density and homoge-
neity, minimal internal stress and a smooth and clean surface.
All these requirements can only be fulfilled by the correct use
of the laws that define the casting solidification process and
various defect prevention measures.

Sand and thin-wall metallic 3D custom castings are quite
distinct in terms of their thermophysical properties. The mold
in a sand cast heats at a low rate, as the thermal conductivity
is high compared to the heat transfer coefficient. However, the
cooling rate of the casting itself is higher as its thermoconductiv-
ity is low compared to the heat transfer coefficient because of
the considerable thickness and the low heat conductivity of the
material. We can consider a 3D sand mold to be semi-infinite
as its outer surface does not heat up noticeably during solidifi-
cation of the casting. It is known (Mikhailov et al, 1987) that
the thickness of the solidifying layer at the casting surface is
proportional, and the linear rate of thickness frozen is inversely
proportional to vt when cooling in a sand mold. The linear rate
of solidification of the casting drops with time, i.e. the rate is
not the same along the section of the mold and is substantially
lower in the central zone of a planar mold. Complex form
castings used to be viewed as consisting of planar, cylindrical
and spherical parts with their relative size values L = V/F,
where V is volume and F is the surface area of the casting. In
cylindrical and spherical castings, as opposed to planar ones,
the linear rate of solidification does not drop by the end of the
process, but increases due to the change in the ratio of the
solidifying metal volume to the cooling surface. The regularities
of mold solidification in 3D sand casts are applicable to other
types of casts. Only in the case of using thin-wall water-cooled
metal casts (without coating) for making thin-walled castings
the thickness of solidifying metal layer does change linearly
with time, and the solidification rate becomes constant.
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other physical phenomena that may be suitable for analysis based on empirical

The pouring-feeding systems, i.e. the systems of channels
and rigging elements of the cast, are used for the delivery of
metal and filling of the cast cavity, as well as feeding of the
mold during solidification. The choice of metal delivery and
regulation of its flow during filling of the form can create a
desired regime of solidification and allow manipulation of the
structure and physical properties of the casting to a certain
extent. With the use of the pouring-feeding system the mode
of solidification and cooling of the mold can be regulated, thus
creating directional solidification. For this purpose external and
internal coolers can be used.

Complexity of the physical process and geometric informa-
tion makes mathematical modeling of solidification difficult and
computationally intensive. In this paper we show that many of
these difficulties can be overcome through implicit function
models constructed using theory of R-functions.

1.2 Postulated Mathematical Properties. Mathematical
models of physical processes should be consistent with available
experimental data and known physical laws. Such information
and engineering intuition suggests that the following set of pos-
tulates form a reasonable basis for mathematical modeling of
metal casting:

(1) If the initial temperature is constant along the bound-
aries of the form, the solidification of metal will take
place along the points that are equidistant from the
initial boundaries. In particular, if the initial boundaries
are linear, then the transition between the solid and
liquid metal remains linear.

Experimentally validated Chvorinov’s rule (Chvorinov,
1940) states that

(2)

logt = klog (V/IA) + b,

where V is a total casting volume, A is a total surface
area, ¢ is a total solidification time, and b, k are con-
stants.

The speed of metal solidification, and therefore the lo-
cation of unsolidified metal, depends on prescribed
heating or cooling conditions at the boundary portions
of the original form and its interaction with adjacent
forms, insulators, and chills (if present). This gives a
method for moving and eliminating defects associated
with the final stages of solidification.

Except in the final stages of solidification (that could
be followed by shrinkage), the physical nature of the
solidification process suggests no discontinuities in the

(3)

(4)
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temperature field, temperature fluxes, and the resulting
stress fields.

Sharp corners in the mold affect the speed of the solidi-
fication. In particular, for two-dimensional forms it has
been established (Neises et al., 1987) that in the vicinity
of a convex right angle the isothermal lines are deter-
mined by

(3)

Xy
x+y

= const,

where x and y are distances to the edges forming the
right angle. More generally, the solidification process
speeds up near the convex angles and slows down in
the vicinity of the reflex angles.

The ambient temperature remains constant at all points
that are sufficiently far from the mold and will be called
the ‘‘temperature at infinity.”’

1.3 Choice of Mathematical Models. A common empiri-
cal method for predicting solidification of metal in castings
relies on a “‘inscribed rolling ball’’ analogy. The center of a
ball rolling along the smooth boundary of the casting gives the
set of points that are equidistant from the boundary and therefore
can be used as a heuristic measure of the solidification speed.
Another way to describe equidistant points is by level contours
of so called normal function fof the boundary (Rvachev, 1967,
1982; Kutsenko, 1990; Kutsenko and Markin, 1994). The equa-
tion of the boundary I' = (f = 0) is called normal if the value
of f(p) is equal to the Euclidean distance from point p to the
boundary I". Similarly a function f that coincides with the nor-
mal function only on the boundary T is called normalized and
has a property that (9 f/6v)|r = 1.

In this paper we show how normal and normalized functions
can be used for modeling solidification in metal castings. Con-
structing such functions for reasonably complex castings re-
quires a general mathematical method to transform geometric
information (such as boundaries of the mold) into an analytic
model (in this case, an implicit function). The methods for
constructing the needed implicit function used in this paper
are based on the theory of R-functions (Rvachev, 1967, 1982;
Shapiro, 1988) which is briefly introduced below.

(6)

2 Construction of Implicit Functions

2.1 Method of R-Functions. Functiony = f(x;,...,%,)
is called an R-function if it’s sign is completely determined by
the signs (but not magnitudes) of its arguments. A more general
definition of R-mappings can be found in (Rvachev, 1967,
1982). Below we will use the following R-functions:

R — conjunction:

1 (x+y—vVx*+ 3y =2axy) (1)

l+a

X Aoy =

R — disjunction:

X Vay= L (x+y+Vx?+y* = 2axy) (2)
1+ a
where —1 < & = 1. In particular, for & = 1, we have

XMy=3(x+y—|x—y)=min(x,y  (3)

xViy=3(x+y+ |x—yD)=max (x,y) (4

For @ = 0, we get one of the simplest and most widely used
systems of R-functions:

Xhoy=x+y—Vx*+y? (5
XVoy=x+y+Vx*+y° (6)
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The above R-functions correspond to the Boolean logic func-
tions A and V in a precise sense which is explained below. We
will also find useful the R-operation corresponding to logical
equivalence ~:

(7

For positive x and y, this operation coincides with one of the
operations discovered and used by Ricci (1973). A significant
advantage of R-equivalence ~, is its associativity:

X~y =xp(x" 4y~

(x~,,y) ~nz=xyz(xn+yn)—lln(xnyn(xn+yn)-—l+Zn)—1/n
= xyz(xnyn +xnzn+ynzn)—1/n
=X~ (Y ~n2) =X ~0Y ~az.

It is easy to see that R-operations A, and V, are also associative.
However, operations A, and V, are not associative.
R-functions allow constructing normalized implicit functions
for complex geometric objects. Let geometric domain 2 =
F(Z,,...,Z,) be constructed as a Boolean (union and intersec-
tion) combination of primitive regions Z,, with every %, defined
by a real-valued function inequality (o; > 0). If fis an R-
function of n arguments corresponding to the Boolean function
F, then the implicit function for the resulting geometric domain.
is immediately given by Q = (f(oy, ..., 0,) > 0). Outside
of Q function f (o, . .., 0,) is negative and the equation f (o,
.., 0,) = 0 defines the boundary I' of the region 2. Further-
more, if every primitive implicit function o; is normalized at
the primitive boundaries, then all of the R-functions above pre-
serve this property, and the function f(o, ..., o,) is normal-
ized at the boundary I" (Rvachev 1982). Construction of normal
implicit functions is more difficult in general, but has been
solved in many common situations described below.

2.2 Normal and Normalized Functions. Normal func-
tions are known for many common geometric objects, for exam-
ple:

e aline: |[xcosa + ysina — p| =0;
o acicle: [V(x — a)? + (y — b)>* = R| = 0;

o apoint: V(x — a)® + (y — b)> = 0;
s an ellipse: (ya® — Axb%/a* — b*) — V(1D +1 =0,

where A(x, y) is the real root of equation

(Ax — y)2(a® + \B?) — N2(a* - b2 =0,

which is related to the minimum value of normal function
plx, ¥). :

The normal function of a line segment is basically a Euclidean
distance function; it is often constructed in a piecewise fashion
by considering a Voronoi diagram for a line segment and its
endpoints as shown in Fig. 1(a). But the normal equation of

(X2, ¥2)
\ (x2, yo) %72

\ X AN 7
\ (x1,v1) N P

AN 7
(x1, Y \
: I
!
!

(@) . (b

Fig. 1 Constructing normal (distance) functions for linear and circular
segments.
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the line segment with the endpoints at (x,, y,) and (x,, y,) can
also be written explicitly as:

‘P(x’}”xl’J’l,xz;yz)E'l‘{_M"'

2 [-
2 _ N2 2 2
(Gl 212]%) [l—sign< —113—)]} . (®)

where
f=2x = x = x)(y2— )
L= @2y =y =) - x);

f=12x = x5 = 0)0n —x) + 2y =y =y — ¥l
=Vt = x)% + (32 — y1)%

Similarly, the normal function for a circular arc can be con-
structed as shown in Fig. 1(b). If M,(x,, y;) and M,(x;, y2)
are the beginning and the ending points respectively, then angle
@ between the tangent at M; and the chord M, M, is considered
positive when the portion of a circle lies to the left of the vector
M, M,. Once again the normal equation can be written explicitly
as

QD()C, Yy X1 Y1y X2, Y2, 6) = n(x,7 y,) +

Ex',y) —mx', ¥ 1

> - sign §(x", )1, (9)
where
x' = f3/2l;
y' = (h -2
§=1(lx| = U/2)* + y%
n= —l - l V4x? sin® + (2y sin 8 + [ cos G)ZI;
sinf 2siné

Q=ysin9+%cos€— | x| cos 6.

It was shown in Rvachev (1982) that when # = 0 the normal
function of an arc transforms into a normal function of a chord.
An important advantage of explicit representations over proce-
dural definitions of normal functions is that the defined func-
tions are differentiable almost everywhere (except at the points
that are equidistant from several points on the segment in ques-
tion). The differential properties of constructed functions play
an important role in modeling of solidification processes.

Normal functions and equations may be difficult to construct
for some objects (for example, exponential and logarithmic
boundaries require solving transcendental equations ). However,
as was shown in Rvachev (1982), a normal equation can be
approximated with arbitrary precision by a finite number of arcs
and line segments for any boundary. .

If fi(x, y) is a normal function of the boundary L,, and f;(x,
¥) is a normal function of the boundary L,, the function

80(x7}’)=f1(x,}’) /\1f2(x7y) (10)

is a normal function of the boundary L that is the union of
boundaries L; and L,. However such a normal function is a
distance function and is therefore not differentiable at any point
that is equidistant from two or more boundary points (i.e., pre-
cisely at the points lying on the boundaries of Voronoi regions).
In terms of modeling temperature fields, these derivative discon-
tinuities correspond to discontinuities in heat fluxes, which con-
tradicts the physical principles and the fourth postulate in sec-
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tion 1.2. Therefore instead we propose to use a normalized
function

ACRINICR))
filx, y) + failx, y)

which is consistent with the fifth postulate and is differentiable
everywhere. This function corresponds to Boolean equivalence
and is therefore called R-equivalence. Note that R-equivalence
(11) approaches R-conjunction f; A; f; for points that are close
to the smooth parts of the boundary. In this case, if v is the R-
conjunction of contributions from boundaries L, L, . . ., L,

e(x, ¥) = fi(x, y) ~ falx, y) = (11)

Lii,...,L,(butnot L;), and u; < v, then
uv u; U;
U=y ~v=——=——=y; AU+ 0| — ).
u; +v u; v
. — + 1
v

In other words, u ~ u; near i-th region of the boundary. The
situation changes in proximity to corner points. Near these
points the normal functions of the sides of an angle are close
in value, but small compared to normal functions of other sides.
Thus the solution around a vertex formed by two edges with
normal functions u; and u,, will be approximately u =~ u; ~
u,, which means that it will not be affected by other boundaries
away from that vertex. It should be noted that the validity of
operation x ~ y is supported experimentally only in the vicinity
of right angles. Other angles require modification of the con-
struction procedure as we explain in section 3.1.

2.3 Modification of R-equivalence. One serious draw-
back of operation x ~ y is that it grows unbounded (goes to
infinity) as x and y go to infinity. Since x and y correspond to
the respective distances from portions of the mold boundaries,
such behavior contradicts the sixth postulate in section 1.2. One
way to correct this undesirable effect is to directly modify R-

equivalence as:

xy=—2 (12)
X +y+exy

This new operation preserves most of the attractive properties
of R-equivalence (summarized in the Appendix), including
commutativity, associativity, and other convenient computa-
tional properties. We will also see in section 3.1 that parameter
€ can be used to correlate the model with the known data about
the ambient temperature at infinity.

3 Implicit Functions for Metal Solidification

3.1 Model Development. Modeling of the liquid metal
solidification process in polygonal form castings was examined
by Neises et al. (1987) and by Uicker and Sather (1992) using
normal equations of boundaries and R-equivalence (9) to define
the boundaries of the area under study and to visualize the
temperature field distribution. One of the assumptions was
steadiness of temperature at the border of the volume (assigned
value zero for convenience). However, the possibility to pro-
vide various thermal fluxes through the faces (in 3D case) or
edges (2D) was allowed. In this case, the normal functions of
the edges u; were used with the weight coefficients m; that were
inversely proportional to the gradients of the modeled field.
Here we build on these earlier studies, and extend them includ-
ing in terms of allowed heat exchange conditions with the envi-
ronment and implementation of thermal interaction of two or
more neighboring casts filled with metal within the same mold.

Due to the associativity of operation (11), we can include
normal functions of the parts of the field boundary in an arbi-
trary order while constructing the function u of the temperature
field. In this case, if the cast and the boundary conditions have
the same type of symmetry, then this symmetry will be pre-
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Fig. 2 Constructed implicit function preserves the symmetry

served in the constructed implicit function (and the modeled
temperature field). (See Fig. 2.)

In case of a right angle it was verified (Neises et al., 1987)
that the actual temperature field is of the same type as the
implicit function model defined by (u,/m;) ~ (uy/m,), where
u1, u,—normal functions of the two sides. However, it is not
immediately clear whether the same procedure of building a
function u as u = (u;/my) ~ (u/my) ~ . .. (u,/m,) is applica-
ble to other angles; and in fact it is easy to explain why it may
inappropriate. To clarify this issue, a numerical experiment was
conducted. The series of quadrangles with the vertices in A, B,
C, D) was considered (refer to Fig. 3). When A coincides with
point O the quadrangle degenerates into a triangle; when A
coincides with point M the quadrangle is the square ABCD; the
corresponding function can be written as

~£2)
Mcp ’

_ ( Usp
u=mm|— ~
Mg
where mm is some experimentally chosen scaling coefficient
(as discussed below), and myp = mup = mge = mep = 1.
Suppose that the equivalence operation can be applied also in
the case of other positions of A (i.e. for other values of angle
BAD). In particular, let us assume A is collinear with B and D
(the angle BAD is 180 deg). According to the first postulate in
section 1.2, the level lines of the modeled function u have to
be straight along a straight border. As for isolines that are built
according to formula (12), they actually have shapes as shown
in Fig. 4 in this case. The contradiction with the assumption
that the isolines near a straight border have to be parallel to the
latter is apparent. To eliminate the found defect and in order to

Uap  Usc

(13)

Myp Mgc

Fig. 3 A triangle shape as a limit of quadrilateral
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Fig. 4 Isolines of the implicit function are not consistent with physical
postulates

allow further correction of the behavior of u near a border

- vertex, it makes sense to use not only the normal equations for

the smooth parts of the boundary, but also the normal functions
of the vertices: .

n=Vx=x)’+ (- »)?
with corresponding coefficients k;. Applying R-equivalence to
all edges and vertices, equation (13) will assume the following
form:
Ty T8 'p Ic
u = mm uAB~uAD~uBC~uCD~']'€;~'k—BN'k_'D~k_C .

Along the radius OA usp = u,p and, according to property e),

and taking into account that along this radius rs = uss, from
(uapl2) ~ (ralky) = usp we get ky = —1 when a = 0. On the

Fig. 5 improved implicit function model using angle weights
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1

Fig. 6 Relationship between angle « and the weighting function k(a)

other hand, when a = 2, i.e. in the case of a right angle, k, =
0

Thus, using the associativity of R-equivalence, the u function
sought will be presented in form:

: Ui U Uy T Iy Tn
u=mm|l —~—~, . .~ —~—=~=~ _  ~—=.

(14)

Note that if any of the k; or m; values approach zero, i.e. (&;/
m;) = % (r;/k; = »), then the corresponding component of Eq.

Fig. 7 Implicit function models for polygonal shapes
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Fig. 8 Parametric studies of implicit function models

(13) disappears, based on property (c¢) of R-equivalence in
Appendix A. As shown in Fig. 5, the above approach eliminates
the problems observed in Fig. 4, when the coefficients k; vary
from 0 to —1 as point A merges with point O. Hence, the
dependence of coefficient k; on the value of the angle has to be
as is shown in Fig. 6. The values of function k = k(«) in points
M and N are established and are reliable. The possible options of
this dependence are shown in Fig. 6 as dotted lines. Numerical

Fig. 9 A two-dimensional casting bounded by linear and circular seg-
ments

Transactions of the ASME



Fig. 10

experiments showed that none of these choices lead to contra-
diction with the engineer’s intuition about the character of a
field around the vertex, so additional experimental data are nec-
essary for getting the more precise correlation. For simplicity,
we assume this dependence to be piecewise linear. This ap-
proach allows to formalize the process of choosing coefficients
k; and determine them from the geometrical characteristics of
the cast cavity.

The choice of coefficient mm is based on experimental data
and Chvorinov’s rule (see section 1.2) and is proportional to
ratio of area to perimeter in the case of a planar shape. This
captures the relation between the temperature on the casting
boundary and the maximum temperature of the liquid metal,
as was originally suggested by Uicker and Sather (1992).

Finally, as we discussed in section 2.3, modification of R-
equivalence using Eq. (12) does not undermine the validity of
the above considerations. Accordingly, instead of the implicit
fpnction model of Eq. (14), we use a more practical expres-
sion:

u =5 LN i
=i=lnp i=ln T s
k

i i

(15)

where the choice of technological parameter e is based on data
about the ambient temperature at infinity.

If the computed temperature field is not satisfactory, it can
be easily changed by manipulating parameters m; that corre-
spond to the temperature fluxes at the boundary. In particular,
according to the third postulate, the undesirable local maxima
can be shifted towards the boundaries for the purpose of elimi-
nation of defects in solidifying metal.
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Interacting fields of several castings

3.2 Implementation and Examples. The described tech-
niques were fully implemented in a POLYE modeling system
(Rvachev and Shevchenko, 1988) as a program that requires
minimal input information about the form under study. Specifi-
cally, two-dimensional boundaries are described by a list of
ordered line segments (specified by the coordinates of their end
points) and circular arcs (described by the end points, center
coordinates, and radii). Figures 7-~10 show examples of the
problems modeled and solved using the approach described in
this paper.

¢ Figure 7 shows examples of computed temperature fields
in polygonal castings. These examples were used as test
runs in comparing the computed results with similar re-
sults reported in reference (Uicker and Sather, 1992).

¢ Castings bounded by arcs and line segments are shown in
Figs. 8 and 9. The example in Fig. 8 illustrates parametric
studies carried out in system POLYE. Changes of parame-
ters of the circle are automatically propagated to implicit
functions and the computed field, without any additional
programming or constructions. The ease of such paramet-
ric studies is one of the advantages offered by R-function
technology (Rvachev and Shevchenko, 1988).

* Figure 10 shows examples of several interacting fields of
two or more castings. As in the case of simply connected
domains, the governing assumption was that the field dis-
tribution was equidistant in nature, but was limited by the
ambient temperature level (¢). In case of several inter-
acting casting cavities, the already mentioned k; parameter
depends not only on the value of an angle at the vertex,
but also on the relative position of the cavities: k; (k) =
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k;(0) + k(k; (1) — k;(0)), where k changes from 1 to
0. The same formula was used to find also parameter m; .
Figure 9b shows the results of merging two parts, where
changes in corresponding parameters k; and m; take place.

The examples in Figs. 7-9 are intentionally very simplified and
were chosen to enhance understanding of the methods involved.
However, such simple example do not emphasize another pri-
mary advantage of the implicit function method, the speed ad-
vantage. The execution speed of analysis is improved by at least
an order of magnitude over finite element or finite difference
methods (Uicker and Sather, 1992). In addition, there is an
even larger saving in model preparation time since no mesh is
required. Also, for the same reason, accuracy cannot be de-
graded by an inappropriate mesh and no time is spent in iterating
to improve the mesh. ‘

4 Conclusions

4.1 Extensions to Three Dimensions. The described
methods of modeling generalize to fully three-dimensional
shapes. In particular, the required implicit functions can be
automatically constructed for all solid objects (Shapiro, 1994),
and the constructive techniques using R-functions remain identi-
cal. Normalized equations of line and circular segments become
normalized equations of planar and quadratic surfaces and other
three-dimensional primitives. Role of comer points in Eq. (14)
will be played by the (possibly curved) edges of the solid, and
the quantities r; may become variable functions. Additional
controlling component constants must be associated with each
vertex of the solid (intersection of three or more faces). A
number of methods for constructing the required functions asso-
ciated with faces, edges, and vertices of solids based on the
theory of R-functions are known (Rvachev, 1982). As in the
two-dimensional case, the qualities of the resulting temperature
field and the interface between liquid and solid metal may be
characterized by the isothermal surfaces, which could be visual-
ized in plane sections of the solid.

4.2 Methodology of Implicit Functions. In addition to

metal solidification modeling, the mathematical machinery de-

veloped in this work is applicable to many other applications
where the physical process can be described through an evolu-
tion of a geometric form, based on experimental data and/or
engineering intuition. For instance, predicting the depth of pene-
tration of a given heat treatment process on hardness in the
interior of a heat treated metal part can be found directly from
the normalized functions discussed in this paper. The only ex-
tension required is that a standard ‘‘Jominy bar’’ test be used
for the given heating process to calibrate the iso-function values
with measured metal hardness values.

In many realistic situations, the physical phenomena are so
complex that constructing and investigating their integral-differ-
ential mathematical models may not be practical. In such situa-
tions, a simpler empirical approach, such as our approach to
solidification, may also provide a reasonable alternative for pre-
dicting engineering analysis results with sufficient confidence
level. For example, the spread of forest or prairie fires may be
determined by a large number of factors: combustion rates, wind
direction, natural water barriers, and so—all of which may be
measured with reasonable precision. The initial shape of the
fire may significantly influence the evolution of the front. Other
problems that possess similar characteristics include corrosion
processes (even if much slower than the fire problem described
above) and the solid rocket fuel combustion. It will be also
interesting to see if the proposed methodology may be used in
design and fabrication of microelectromechanical systems
(Kota et al., 1994), where the characteristics of the etched
shapes are often predicted by evolving geometric boundaries
(Hubbard and Antonsson, 1994).
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APPENDIX

Formal Properties of Modified R-Equivalence
(a) Commutativity x B y=y ~ X;

(b) Associativity

Ci Ej C’. 6,. Ej (i
~y)~z=x~(y~2=x~(y~2)
(i+€'

; € €
=x~(y ~ Z)=x~y~z’

where € = (¢ + ¢)/2. Indeed,

xy
— 4
& & +y+e
(x~y)~z= RS
— 2B
X+y+exy x+y+z+exy
xyz

—xy+yz+xz+(ei+ej)xyz

éi C‘v €. E’.
X~ ~2)=x~(y~2)

€t € €

x~(y~z)=x~ ~ Z;
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(¢) Limiting properties (k) Elimination of opposite elements lim (x ~y ~ 2) = x;

R - -y
R 0 & - -
limx~y=ux D) ~epx =02 )7+ 2]y
pi— i=1 i=1
€ ¢ "
. N & (m) ~imia Xi T ~i=ta Xiy where ¢ = (2 e,-)/(n - 1.
Hm ~iep X =m0 X5 =1

The last two properties further simplify'=computations involved
) in applying the operation to n arguments and are convenient
(e) Averaging of equal elements x ~ x = (x/2); for algorithm development.
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