Construction and optimization
of CSG representations

Vadim Shapiro and Donald L Vossler*

Boundary representations (B-reps) and constructive solid
geometry {CSG) are widely used representation schemes
for solids. While the problem of computing a B-rep from
a CSG representation is relatively well understood, the
inverse problem of B-rep to CSG conversion has not
been addressed in general. The ability to perform B-rep
to CSC conversion has important implications for the
architecture of solid modelling systems and, in addition,
is of considerable theoretical interest.

The paper presents a general approach to B-rep to
CSG conversion based on a partition of Euclidean space
by surfaces induced from a B-rep, and on the well known
flact that closed regular sets and regularized set operations
form a Boolean algebra. It is shown that the conversion
problem is well defined, and that the solution results in
a CSG representation that is unique for a fixed set of
halfspaces that serve as a “basis’ for the representation.
The “basis” set contains halfspaces induced from a B-rep
plus additional non-unique separating halfspaces.

Animportant characteristic of B-rep to CSG conversion
is the size of a resulting CSG representation. We consider
minimization of CSG representations in some detail and
suggest new minimization techniques.

While many important geometric and combinatorial
issues remain open, a companion paper shows that the
proposed approach to B-rep to CSG conversion and
minimization is effective in F°. In E’, an experimental
system currently converts natural-quadric B-reps in
PARASOLID to efficient CSG representations in PADL-2.

solid modelling, boundary representation, constructive solid geometry,
Boolean operations

Rigid homogeneous solids may be modelled by sets of
points in E’ that are compact, regular, and semi-
analytic; such sets are called 'r-sets’**. Six families of
unambiguous (informationally complete) representation
schemes for r-sets are known’. The two representation
schemes that are most widely used today, constructive
solid geometry (CSC) and boundary representation
{B-rep), are illustrated in Figure 1. While the problem
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Figure 1. A simple solid and its representations:
constructive solid geometry (CSC) and boundary (B-rep)

of computing a B-rep from a CSG representation is
relatively well understood®, the inverse problem of B-rep
to CSG conversion has not been addressed in general.
The importance of B-rep to CSG conversion can be
seen from the following considerations:

® The inability to perform B-rep to CSG conversion
has put significant constraints on the design of
modern solid modelling systems?, as shown in Figure
2(a). Figure 2(b) shows an ‘ideal’ architecture of a
solid modelling system that allows representation-
specific technology to be used on alternative
representations through a bilateral B-rep—CSG
conversion”.

® B-rep to CSG conversion for planar solids is
performed in user-interfaces of solid modellers like
PADL-2° and Unisolids’. Many common mechanical
parts can be easily constructed by extruding or
revolving a CSG representation of a planar cross-
section in the direction perpendicular to the plane
{Figure 3(a)). 2D B-rep to CSGC conversion has
received wide attention in the literature (for a survey
see Shapiro and Vossler®).

® The size of computed CSG representations is crucial
to the performance of subsequent application
programs. Figure 3(b) shows all the primitives used
in a CSG representation of the solid in Figure 3(a).
This representation is verbose because many
primitives have coincident surfaces while some
primitives may not be necessary. Thus we must
deal with CSC minimization, which subsumes the
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problems of redundancy elimination and null object
detection, as addressed for example by Tilove®,
Rossignac and Voelcker® and Woodwark™.

® Finally, the issues surrounding B-rep to CSG
conversion are of significant theoretical interest. We
shall see that conversion relies on tools from
algebraic and computational geometry, and raises
unexplored issues.
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Figure 2. Architectures of dual-representation solid
modelling systems: (a) classical unilateral, (b) ‘ideal’
symmetric

Figure 3. (a) Solid obtained by extruding a planar
cross-section (courtesy of Richard Marisa). (b) The
primitives used in an inefficient CSC representation of
the solid in (a)
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B-rep and CSG representations of closed
regular sets

In this paper, it is assumed that a solid object S is
given by a valid B-rep ¢S. The particular type of B-rep
is not important, as long as it specifies exactly all
surfaces containing the faces of S. Each surface is used
to induce a halfspace. B-reps whose faces do not
associate naturally with halfspaces, e.g. B-reps whose
faces are parametric 'patches’, pose problems that lie
outside the scope of this paper.

Halfspaces are denoted by lower-case literals, such as
g and h, and define regular semi-analytic subsets of
W' For example, a halfspace is often given by
{PEWf(p) 20}, where f is a (semi-Janalytic real
function, or it could be detined by any other
unambiguous representation. The important property
of a halfspace is that any point pe W can be classified
with respect to h as being in, on, or out of h, using the
language of set membership classification™.

Properties of CSC representations are summarized
in Requicha and Voelcker”, following research on
mathematical foundations by Requicha' and Requicha
and Tilove’. Central to CSG are notions of closed-set
regularity and regularization relative to the topology of
the universal set W. Regularization of a set X is defined
by

regX = closure(interior(X))

and a set X is called closed regular {or simply regular)
if X=regX. Similarly, regularized set operations are
defined as follows

hiu*h,=regth,uh)

h,~*h, =regth nh,)

h,—*h,=reg(h,—h)
h, =reg(W —h)

The properties of regular sets and regularized set
operations were studied by Kuratowski and Mostowski'
and Requicha and Tilove’. In particular, it is well known
that regular sets form a Boolean algebra under
operations of U*, %, —% The class of CSG-
representable objects is determined by the set of
primitive regular halfspaces.

It is important to distinguish between a regular
semi-analytic set S and its CSG representations. A C5G
expression @ is a Boolean form, ie. an expression
composed from halfspace literals h,, ..., h,, and
symbols denoting regularized set operations, defining
a Boolean function F. When @ is applied to a specific
set of halfspaces H, it becomes a CSG representation
®(H) whose value F(H) = | ®(H)| is a semi-analytic set

t1In this paper W is a d-dimensional Euclidean space £°, d < 3.

1 Note that r-sets do not form a Boolean algebra, but rather a ring
with operations U®, n*, —°, due to the requirement that r-sets
be bounded. Without loss of generality, we deal with CSG
represertations of regular {perhaps unbounded) sets, with the
understanding that such representations are valid only when the
boundedness of the represented sets can be established
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of points S. The set S = | ®(H)| is unique because CSG
representations are unambiguous, while its representation
®(H) is not. Two representations ®,(H) and ®,(H)
represent the same set if and only if | ®,(H) | = | D, (H)|.
Note that, technically, a halfspace literal h represents
aregularset|h|. For example, we should properly speak
of classification with respect to |h|, and not A.
However, when the meaning of a single halfspace is
obvious as above, we will use h to denote either the
literal or the set it represents,

We will use capital Roman symbols, such as F, G,
and S, for functions defining regular sets and Greek
symbols, such as ®, ¥, and II, to denote CSG
expressions. We say that @ represents set S if and only
if S=|®|. Henceforth we will use Boolean addition
(4) and multiplication () to denote regularized union
(U*) and regularized intersection (~*) respectively.

B-rep to CSG conversion problem

The fact that CSG representations are not unique™s
commonly perceived as a major difficulty in performing
B-rep to CSG conversion, leading to many ad hoc
solutions that are often restricted to narrow geometric
domains. On the other hand, every Boolean function
on n variables can be written in a canonical form that
is unique for a fixed choice of variables (see for example
Kuratowski and Mostowski™ and Miller’®). Thus, such a
form must exist for every regular set S that can be
represented by some CSG expression.

We shall show that the existence of the CSG
canonical form is the key to constructing a solution to
the B-rep to CSG problem. Furthermore, this form can
be used as a basis for a deterministic CSG minimization
procedure. As a result, we obtain a solution to the
conversion problem that is both exact and practical.

The general problem of B-rep to CSG conversion for
a solid S can be subdivided in the following three
subproblems, addressed in this paper:

® Construct a set of halfspaces H that is sufficient for
a CSG representation of S.

® Find a (smallest) subset of H that is both necessary
and sufficient to represent S.

® Given a sufficient (and perhaps necessary) set of
halfspaces H, construct a CSG representation of S
that is minimal in some sense.

Consider the shaded triangle S < £* in Figure 4. There
are many C5C representations of S using primitive
halfspaces h,. h,, h,, and h,. For example

S:!(D1I:Ih1h:hz|
=0, = [hihyhshy|
= fq)zl = lh1h2hl +h1hzhxﬁ4|

and others. It is intuitively clear that @, is the best CSG
representation because it uses the smallest number of
halfspace literals, while @, is the worst of the three,
These observations are made precise by noting that
halfspaces h,, h,, and h, are both necessary and
sufficient for any CSC representation of S, while

Figure 4. Planar partition by four halfplanes allows many
different CSG representations of shaded triangle S

halfspace h, is not necessary. In addition, the CSG
representation @, = h,h,h, is the absolutely minimal
representation for the triangle S.

Related work on B-rep to CSG conversion

The 2D B-rep to CSG conversion problem has been
studied extensively for polygons. The most popular
approach is to represent a polygon as a difference of
its convex hull and a finite number of ‘concavities’ (e.g.
Rvachev™, Tor and Middleditch” and others). Each of
the concavities is processed recursively using the same
convex hull property. It is also known that all new edges
used in the construction of convex hulls can be
discarded, and that the resulting CSG representation
has exactly one linear halfspace for every edge of the
polygon™. A short and elegant proof of this fact can
also be found in Dobkin et al.”, where an efficient O(n
log n) convex-hull based algorithm is presented. It is
worth noting that such representations generally are
not minimal. Smaller representations usually can be
found when some of the polygon’s sides are collinear,
when the solid has periodic identation, and in other
generic cases (see examples in Shapiro and Vossler®
Different classes of CSG representations can be
obtained using polygon decomposition techniques
{recent surveys can be found in O'Rourke® and
Chazelle™). Broadly, these techniques can be divided
into partitioning methods and covering methods.
Partitioning methods are used to represent a polygon
as a union of non-overlapping convex pieces, but lead
to unnecessarily verbose CSG representations. On the
other hand, covering of a polygon with possibly
overlapping pieces™*’ may produce relatively good
CSG representations that take advantage of the
polygon's collinear edges. Problems of computing
various minimum covers tend to be in NP*, Polygon
covering methods are closely related to our CSG
minimization approach, as described in a later section.
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Significantly less is known about the B-rep to CSG
conversion problem for curved planar solids, e.g. those
bounded by circular arcs. A companion paper®, which
uses results from the work reported here to solve the
B-rep to CSG conversion problem”for curved planar
solids, provides a bibliography on various restricted
approaches.

We know of no significant results pertinent to 3D
B-rep to CSG conversion for solids bounded by curved
surfaces. We observe that, in principle, cylindrical
algebraic decomposition algorithms” can be used to
perform the B-rep to CSG conversion in E°. At present,
however, the practical consequences of this observation
are not clear.

Even for linear polyhedra in E’, only limited, mainly
negative, and non-constructive results are available
(e.g. in Dobkin et al.®). Early attempts to extend a 2D
convex-hull based algorithm to 3D polyhedra have
failed”. More recently such an algorithm has been
found”, but it relies on fairly brute-force decompasition
strategies that tend to produce verbose CSG
representations. It should be noted that a CSG
representation of a polyhedron can be easily constructed
fromiits binary space partition (BSP) tree representation®.
Procedures for computing a BSP tree representation of
a polyhedron from its B-rep have been developed” and
were used to show that every polyhedron has a CSG
representation of size O(n”). No lower bounds on the
size of a minimal CSG representation for polyhedra are
known, except for certain special covers™.

Finally we wish to point out an important connection
between the problems considered in this paper and
research on arrangements of halfspaces. The complexity
of arrangements in E° has direct bearing on both the
development of practical and efficient algorithms for
B-rep to CS5G conversion and determining the
complexity of the constructed CSG representations.
Arrangements of hyperplanes have been studied
extensively in Edelsbrunner®. Results on arrangements
of curved halfspaces are also beginning to appear® %

Related work on CSG minimization

Returning to the triangle in Figure 4, notice that if h,
in @, is replaced by the universal set W, @, in fact
reduces to ®@,. Similarly, if h; in the second term of @,
is replaced by the empty set ¢, ®, can be transformed
into @, using the identities of Boolean algebra.

This example demonstrates the notions of W- and
-redundant primitives in CSG representations that
were defined and studied by Tilove®. Tilove observed
that a CSC representation often can be reduced in size
by eliminating redundant primitives and subsequently
‘pruning’ the resulting CSG tree. Furthermore, redundancy
can be used to formulate some very useful problems.
For example, a null object detection problem of
determining whether a CSG expression represents an
empty set & reduces to determining whether every
primitive halfspace is redundant. Since null object
detection is a fundamental task useful in formulating
such problems as interference -detection, solids
comparison, and boundary evaluation’, redundancy
elimination has become a universal tool.
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Determining whether a primitive is redundant in a
CSC representation requires expensive geometric
computation. Sophisticated techniques for redundancy
detection relying on partial boundary evaluation have
been developed and an extensive bibliography on the
subject is given by Rossignac and Voelcker® A
somewhat different approach to redundancy elimination
based on the notion of constituents is described in
Woodwark™, which implicitly uses the existence of the
CSG canonical form. Unfortunately, the suggested
algorithms are either approximate or impractical. The
redundancy of a halfspace is defined with respect to
a particular CSG representation @, and not the set §
that @ represents. Furthermore, if S # (. the redundancy
of a halfspace may be order-dependent on the
redundancy of other halfspaces.

In the work reported here, we rely heavily on Boolean
minimization techniques® for CSG reduction. We also
use the fact that CSC minimization can be reduced to
switching function minimization™, and thus many
resuits from switching theory (e.g. Miller”) apply. We
shall see that the concepts of “halfspace necessity”
and Boolean minimization lead to provably good results
which subsume the notion of redundancy elimination.

Paper organization

The next section of this paper establishes that B-rep to
CSG conversion is well defined by a disjunctive
decomposition of W. it culminates in a ‘Describability
Theorem” which states the necessary and sufficient
conditions for the existence of canonical CSG
representations. The theorem is used in the section that
follows to construct a set of primitive halfspaces that
are sufficient (and perhaps necessary) to represent a
regular set by a CSG expression. This step is equivalent
to choosing a set of n independent Boolean variables
that assure existence of canonical CSG representations.

The fourth section is devoted to the CSC minimization
problem. We show that the problem is an instance of
Boolean optimization and can be reduced to an
essentially ‘syntactic’ procedure. We discuss both exact
and heuristic minimization algorithms and consider
geometric phenomena that are useful in understanding
and improving algorithms. The required geometric
utilities are discussed in the last section, which also
summarizes our results and concludes with a number
of open issues.

Throughout the paper we use simple 2D examples,
but all results apply in E’ unless specifically stated
otherwise.

EXISTENCE OF CANONICAL CSG
REPRESENTATIONS

B-rep to CSG conversion defined

We have assumed that the B-rep of a solid S is valid,
i.e. represents unambiguously a boundary ¢S which
determines a unique set S that is a compact, regular, and
semi-analytic subset of W'. From the semi-analyticity
of S we know that there exists a CSG representation
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of § using a set of primitive analytic halfspaces H = { h,,

-, ha}. Not only are there many different CSG
representations of S on a fixed set H of primitives, but
H itself, in general, is not unique. A set of halfspaces
H can be viewed as a basis in a space of constructible
CSG representations; in many ways a choice of H
defines the B-rep to CSG conversion problem and, by
and large, determines the success and practicality of
the conversion.

For example: since S is semi-analytic, so is its
boundary &S. Then there exists a. triangulation of &S
that can be extended to the whole of W'**, The union
of all triangles in S constitutes a valid CSG representation
of S. But, as noted in Requicha’, such triangulations
are seldom available in practice and can be very difficult
to compute. While practical algorithms for triangulating
linear 3D polyhedra exist, the triangulation problem is
not completely understood”*. Exact triangulation of
3D curved solids is a more difficult problem.

In most practical situations S is not only semi-
analytic, but semi-algebraic. Therefore there exists a set
H of algebraic halfspaces h,={p|f(p) >0}, where
/=0 is a polynomial surface in W, and S can be
constructed using set operations on H. Furthermore,
the B-rep to CSG conversion can be computed using
a cylindrical algebraic decomposition algorithm?,

Specifically, we call h, a natural halfspace of a solid
Sif the corresponding surface f, = 0 contains some face*
of the B-rep ¢S. Let Hy = {h,, ..., h,} be a set of all
natural halspaces, one halfspace for every face of ¢S.
A set of polynomials F = {f,, ..., f,} corresponding to
the natural halfspaces can be used to construct a
cylindrical algebraic decomposition K = {¢,} of w.
Every cell c,eKis a relatively open set with a property
that for every f.€ F, and for all pE€c, either f(p)=0, or
f(p)>0, or f{p) < 0. Moreover, it follows from the
results in Schwartz and Sharir® that the solid S is a
regular cell complex, i.e. can be represented by a finite
union of cells ¢,eK.

Cylindrical algebraic decomposition may become a
practical tool for 2-rep to CSG conversion. A recent
survey and examples of algebraic methods for
geometric algorithms can be found in Buchberger et
al®. We will show an example of the cylindrical
decomposition later. At present, this approach exhibits
a number of undesirable properties:

® The cells c.eK are represented by a set Q of
polynomials computed from original natural halfspaces
using the method of resultants. The degree of
polynomials in Q is higher than that of the natural
halfspaces, and their number is fairly large. For
example, for n natural halfspaces of degree k in E?,
Q includes O(n?) polynomials of degree O(k?). This
may ledd to very verbose CSG representations on
relatively high degree polynomial halfspaces Q.

® tor a fixed dimension d of E¥ the complexity of the
cylindrical decomposition algorithm is polynomial.

€ Without loss of generality, we assume that a face of a solid is a
“maximal face” {an m-face in the jargon of Silva’’! in the sense
that no other face contains it. A maximal face contains all subsets
of ¢S contained in the surface f =0

Nevertheless, the method relies on exact arithmetic
and the total computational requirements of the
algorithm are prohibitive.

However, the existence of a disjunctive cellular
decomposition of W suggests a paradigm for the B-rep
to CSG conversion, which we will customize to provide
arelatively efficient conversion procedure. In particular,
we observe that the natural halfspaces of a solid S
define unambiguously a cellular decomposition of W
and the solid S is a regularized union of d-dimensional
cells in that decomposition. Therefore, B-rep to CSG
conversion can be done as follows:

® Induce a decomposition of W into (open) d-
dimensional cells using H,, the natural halfspaces of
S.

® Refine the decomposition, if necessary, to make all
cells contained in S describable in CSG. This
refinement is done by using additional halfspaces,
which are called ‘separating halfspaces’ for reasons
given later.

® Classify the cells in the refined composition with
respect to the given B-rep of S to find those
contained in S. The regularized union of all cells in
§ is a canonic CSG representation of S,

We consider these tasks in detail in the remainder of
this section and in the next section. While the resulting
CSG representation s still excessively verbose, it
possesses important uniqueness properties necessary
for the Boolean optimization algorithms described in
the fourth section.

Disjunctive decompositions of W and
canonical CSG representations

Given a set of halfspaces H={h,, ..., h,}, we define
a canonical intersection term as [1, = 8182---84.8€ {h,,
h.}*. Since each canonical intersection term contains
every halfspace h, once there are exactly 2" distinct
I1;s. For example, H = {h,, h,, h,, h,} in Figure 4. Then
there are exactly 16 canonical intersection terms:

hih,hsh,, hihyhshy, hihyhsh,, .., hoRR,h,

The 2" canonical intersection terms I, form a partition
(ie. an exhaustive, disjunctive decomposition) of W
since

Zn
ITLI-ITL =0,i#j and Y [(II,|=w 1)

k=1

However, it is well known™" that a Boolean function
of n variables can be written in the disjunctive canonical
form (DCF). Specifically, if a set S can be represented
by some CSGC expression ® on halfspaces H, it can also
be represented by a unique DCF on halfspaces H

.

$in set theory such a product term is often called a constituent' ™™
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computed as follows

S=1®th, .., h)|
e=:1_ ., 1

=Y ®le, .. e by (2)
e=10. Lo

where e =00r 1, h'=h, h'=h,e=(e, e, ..., €,)

is an n-tuple of 0s and 1s, and the summation extends
over all combinations of n 0s and 1s for the es. For
sets, 0 corresponds to an (¥, and 1 corresponds to W.
Thus, |®le,, ..., e,}] is always either &, or W.

Rewriting Eq. (2} in terms of canonical intersection
terms, we get

S=W-Y 7| +0 3 M| =Y (M7, 3)

=1 i=1 =1

where n,, is the number of canonical terms in S, n,,, is
the number of canonical terms in S, and n,, + n,, =
N2

Thus canonical intersection terms can be viewed as
the smallest spatial building blocks that can be ‘glued’
together to describe any solid in W representable by
a CSG on H. This is particularly natural and appealing
when all halfspaces h, are hyperplanes. A partition of
W by n hyperplanes is usually called an arrangement;
every canonical intersection term I, represents either
a convex connected cell in W, or an empty set (J. It
is well known that there are at most O(n®) nonempty
d-dimensional cells in any given arrangement®. Thus
for a large n, most of the 2" canonical intersection terms
represent empty sets. In Figure 4 only eleven of the
sixteen [1;s are not empty.

Consider now a situation when H includes halfspaces
whose boundaries are not hyperplanes. Figure 5 shows
a simple n =2 example in E°. It is clear that properties
{1) hold. However, the nature of the canonical
intersection terms has changed: obviously they may
now represent disconnected sets (as I, and II, do).

2,3

By 77 P LT 7

Ltrrrrinrrinns

Figure 5. Planar partition by two curved halfspaces.
Canonical intersection terms I1,=h,h, and 11, = h,h,
represent disconnected sets
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Thus

Mi
IHA‘:Z Con (4)

m=1

where C,, , is mth connected set, or component, of the
[T1,], and M, is the total number of components in
ITE | 1t is always true that the number of non-empty
canonical intersection terms N <M =X} _ M,

We shall assume that halfspaces in H are such that
M<« 2", and therefore we can effectively inspect all
components in any partition of W. This assumption
rules out general analytic halfspaces that may result in
an infinite number of components. On the other hand,
for n algebraic halfspaces of degree k the assumption
is reasonable because there can be at most (kn)><
components in the CCD of £’ (e.g. see Renegar).
Tighter bounds on complexity of arrangements of
curves and surfaces are only beginning to appear, for
example in Clarkson et al.”” and Edelsbrunner et al.'.

Substituting equation (4) into (1), we get

w:imJ:j(f cmvk> ()

h=1 m=1

an exhaustive disjunctive connected component
decomposition (CCD) of W. Geometrically, each C,,,
is the largest (semi-! bounded set of points in the
partition of W whose interior does not contain any
halfspace boundaries. Similarly we can rewrite equation
(3) as

5=Z<§ cm,> ()

=1 m=1

which states that any regular set S can be always
represented by a union of components in the partition
of W by H. (It is worth noting that the validity of the
B-rep guarantees that every component C, s
bounded.) Furthermore, as for a fixed set of halfspaces
H equation (6) defines a unique cellular decomposition,
the B-rep to CSG conversion is now well defined. It
reduces to finding a (non-unique) CSG representation
for each C,,, in equation (6) in the partition of W by
natural halfspaces H,.

Describability theorem

Definition: a set S is describable by halfspaces H = {h,,
.., h,} if there exists a CSG expression ®(h,, ..., h,)
that represents it.
We want to determine the conditions under which
S is describable by H, based on the fact that any CSC
representation of S can be written in a DCF given by
Equation (3). We assume that

s < (Bh, L dh, ... U dh,), 7)

since it is easy to prove that S is not describable by H
if this condition is not satisfied (also see Requicha and
Voelcker™ and Requicha and Tilove®).
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Any two points that are in the same component C
must have the same classification with respect to every
halfspace h,. (But it is not always true that any two
points that have the same classification with respect
to every halfspace belong to the same component.)
This defines an equivalence class consisting of all the
points in the interior of the same component C.
Therefore we can talk about a specialized form of
component classification with respect to a halfspace h,,
or with respect to any set S satisfying (7). Namely, C
in S can have only two values: if C< S, CinS=C, in
which case we say that the result of the classification
is true, or if CS S, Cin S = (J, and we say that the
result of the classification is false.

Before we state and prove our main result on
describability of solids, let us consider an illustrative
example. Figure 6 shows a planar solid S bounded by
linear edges and circular arcs. By extending the solid’s
edges we obtain the planar CCD partition of E%. The
components A and B have identical classifications with
respect to every halfplane; therefore they belong to
the same canonical intersection term and are not
describable separately. Yet A =S while B<S. It is
intuitively clear that the solid S is not describable by
the halfspaces shown in Figure 6. Thus we have the
following theorem,

Describability Theorem: given a set of halfspaces
H={h,, ..., h,} and a regular set $ satisfying (7), S is
describable by H if and only if all components C,,, of
every canonical intersection term | I1, ] have the same
classification with respect to S.

Proof: The boundary €S partitions W into two disjoint
sets S and S.

'If" part. Assume that components C,, of every
term |[II,| are either all in S or all in S. Then
Cni S|, ] <5, for all C,,, = S. Therefore, union of
all canonical intersection terms | I, | < S is a valid CSG
representation for S, given by equation (3).

‘Only if" part. Proof by contradiction. Assume that
S is describable by H. Without loss of generality,
suppose there are two components A, B < |I1, | with
A c S and B < S. By assumption and equation (3), S
can be represented as a union of intersection terms
[T<S But Ac|Il,|¢&S. Thus we have a
contradiction. And so every pair of components A and
B of the same canonical intersection term | [T, | must
have the same classification with respect to S. O

While every canonical intersection term |[I1,|
represents some d-dimensional {(possibly empty, or
disconnected) set, an individual component C,_,, may
not be describable. This is unfortunate since it seems
natural to use C,, (and not I1,) as a basic ‘building
block’. Apparently, we have a representational
deficiency: we may not be able to represent each
individual component using CSG on natural halfspaces
in H,. The representational variety of the CCD {equation
{6)) exceeds the representational capacity given by DCF
of equation (3). Specifically, CCD defines 2 distinct
nonempty sets S < W, but there are only 2" sets that

10

[n, " \
Figure 6. Shaded solid S is not describable by H = {h,,

h,, hy, h,, hs} because components A and B are
represented by the same canonical intersection term

can be represented by a finite union of canonical
intersection terms.

CONSTRUCTION OF NECESSARY AND
SUFFICIENT HALFSPACES

Sufficient set of halfspaces

If the boundary of every natural halfspace h,eH, is a
hyperplane, every non-empty canonical intersection
term I, represents a convex (connected) polyhedral
set. Thus |I1,|=C,, for all kK and every C,, is
describable by H,. This leads to the well-known
conclusion that any polyhedral solid is describable by
planar halfspaces associated with its faces.

In a more general setting with curved halfspaces, the
Describability Theorem establishes the necessary and
sufficient conditions for a solid S to be describable by
a set of natural halfspaces H,. More importantly it gives
a practical test (practical because of our assumption
about the number of components in CCD of E9) to
determine if halfspaces in H, are sufficient to represent
S.If at least two components A, B < | I1, | are separated
by a solid’s boundary, H, is not sufficient to describe
the salid S, and it is only natural to try to augment H,
with an additional halfspace g, chosen so that A c g
and B < g. Addition of such a halfspace g, if possible,
effectively separates the canonical intersection term
ITI,| =A+B into two new canonical intersection
terms |[I1,g}{ = A and |I1,g| =B. We will call such a
halfspace g a separating halfspace. Hence the following
problem:

Civen a set 5 and a set of natural halfspaces H, induced
from ¢S, construct a set of separating halfspaces H, such
that S is describable by H = H, UH,.

Consider a simple example in Figure 7. The three
components A, B and C are all subsets of the canonical
intersection term I1 = h,h,h;h, hsh,, with A, B, = S and
C < S (Figure 7(a)). Figure 7(b) shows that adding four
separating halfspaces is sufficient for a CSC representation
of the planar solid S. It should be clear that the four
halfspaces are not unique. Figure 7(c) demonstrates
that adding two (properly chosen) separating halfspaces
to H, is also sufficient to represent S. Finally, in
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Figure 7. (a) Halfspaces h,, ..

Figure 7(d) it is seen that a sufficient set of halfspaces
can be obtained by addition of a single circular
halfspace.

This simple example demonstrates a number of
important properties of separating halfspaces:

® the set H, of separating halfspaces is not unique

® separation of several pairs of components may be
achieved simultaneously (as is the case in Figure 7(d))

® using higher order separating halfspaces may reduce
the total number of required separating halfspaces

® boundaries of separating halfspaces may intersect
components that are being separated (e.g. in Figure
7(b) component C is intersected by all four
separating halfspaces)

® boundaries of separating halfspaces do not ‘contribute’
to 05

In what follows we compare several alternative
strategies for constructing a sufficient set H, of
separating halfspaces.

Strategies for separation of components

Before we consider possible approaches to construction
of H;, let us point out some properties of components
that are useful in the construction of separating
halfspaces. Consider two components A and B
separated by some linear halfspace geHsothat A= g
while B = 8. Clearly, A and B cannot be components
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.. h, are not sufficient to represent the shaded figure S; (b) addition of four linear
separating halispaces is enough to represent 5, (c) addition of two linear separating halfspaces is sufficient to represent
S, (d) addition of one circular separating halfspace is sufficient to represent S

of the same intersection term [II,. The following
property is trivial to prove.

Hyperplane Separation Property: If a line segment ab
connecting two points a€ A and b€ B intersects some
hyperplane ¢g g € H, then A and B are not components
of the same canonical intersection term IT,. O

More generally, consider a case when every
halfspace h,€ H is convex. Then a canonical intersection
term I, can be written as

M =hy .. hha by

Intersection of the first i halfspaces is a convex set
which is connected by definition. Thus disconnected
components arise only due to intersections of halfspace
complements that are concave.

Suppose that the set S is not describable by natural
halfspaces H,, because there is a single canonical
intersection term |I1| = A + B, with A< S and BES.
Let us assume that A and B can be separated by a
hyperplane, or by a polyhedral surface P < (g, u
...u g, where g, 1<i<k, are linear halfspaces.
Then, by the hyperplane separation property, all points
of A are separated from all points of B by some halfspace
g. By the describability theorem, S is describable by
Hou {go - &)

Unfortunately, the construction of a polyhedral
separating surface is not always possible, because

M

Ladh di e & ol o gliR 2 P et h i A L T - S




components of the same intersection term | I1,| may
share common edges (but not faces). If the shared edge
is not planar, the separating halfspace cannot be linear
because its boundary surface must contain the shared
edge. On the other hand, in many practical situations
natural halfspaces H, are such that separating
hyperplanes are always sufficient, while addition of
curved separating halfspaces may reduce the number
of needed halfspaces®.

If S is a semi-algebraic set, we know that a sufficient
H, exists and can be computed using the cylindrical
algebraic decomposition algorithm?®. Because the
algorithm itself is not acceptable for reasons discussed
in the earlier subsection on ‘B-rep to CSG conversion
defined’, we must consider alternative strategies for
separation of components. Consider a planar solid § in
Figure 8(a). The set of natural halfspaces H, contains
three halfspaces: a circular disk h,, h, which consists
of the two disconnected regions bounded by a
hyperbola, and a linear halfspace h;. S is not describable
by {hi, hy, h,} because | T1,| = | h,h,h,| = A + B, with

\
N
N
~
~
~
~
N
N
\
\
N
N
~
N
N\
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AcS and BcS. We consider three alternative
separation schemes:

® Test-based separation: a sufficient set of halfspaces
can be constructed by adding to H, one separating
halfspace at a time, until the conditions of the
Describability Theorem are satisfied. In our example
this is fairly simple (e.g. Figure 8(b)). However, to
use this strategy, we usually must determine the
boundaries of components A and B and then
compute a set of halfspaces that separates them.
This problem can be more difficult than a motion
planning problem.

® Clobal separation: the idea is simple: construct a set
of separating halfspaces H, such that every canonical
intersection term IT, in the decomposition of W by
H, U H, represents a single component. The cylindrical
algebraic decomposition can achieve this. Figure 8(c)
shows a cylindrical decomposition for h,, h,, h,
modified from Buchberger et al®. It is not clear
whether better general algorithms can be found for

[
i
g separates A,B

Figure 8. Different separation stratcgies: {a) solid S = A is not describable by {h,, hs, h;} because | h,h,h,| = A + B;
(b} separating A and B by a set of halfspaces can be viewed as a generalization of a motion planning problem; (c)
cylindrical algebraic decomposition for h,, h,, h; fadditional halfspaces are required for global separation); (d) boundary-
based separation in E* can be achieved using linear chordal halfspaces
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particular types of natural halfspaces, e.g. second-
degree curves and surfaces. It is also worth noting
that only bounded d-dimensional cells need be
represented for B-rep to CSG conversion, because
regularized set operations assure the compactness
of the resulting object.

® Boundary-based separation: observe that |I1,| =
| hih,h;| = C + D. Yet we do not need to separate
components C and D because both are outside of
S. Thus, we only need to separate components inside
S from components outside of S. This observation
suggests that the boundary of a solid can be used
to construct a sufficient H, which is potentially much
smaller than the one resulting from the global
separation. Figure 8(d} shows such a construction.
We have proven® that the set of all ‘chordal’
halfspaces is a sufficient set H, of separating
halfspaces for a large class of planar objects.

The test-based separation strategy is likely to produce
a much smaller set of separating halfspaces than either
global or boundary-based separation. However, as
we already pointed out, this approach may be
computationally prohibitive. The advantages of the
global and the boundary-based separation strategies
are that a set H, is computed a priori, and that they
do not require any ‘planning’ algorithms depending on
knowledge of the boundaries of components.
Furthermore, the boundary-based strategy is likely to
produce a much smaller set H; of separating halfspaces
than the global strategy. None of these strategies are
guaranteed to produce a H, which is minimal, or indeed
even necessary.

Necessary and minimal sets of separating
halfspaces

Civen a set of halfspaces H; such that set S is describable
by H=H, UH,, it is not difficult to compute a set
H* € H that is necessary and sufficient for a CSG
representation of S, if we have a representation of every
| L.

Definition: A halfspace g is necessary in H if 5 is not
describable by H — {g].

Every natural halfspace h,eH, is necessary in H by
construction. To test whether a separating halfspace
g € H, is necessary in H we compute all pairs of canonical
intersection terms (I1,, I1) such that

® |I1| and |I1| have different classifications with
respect to S

® |IT,| and |I1)| have different classifications with
respect to g,

® |I1| and |I1,| have identical classifications with
respect to all other halfspaces he H — {g,}

If there are no such pairs (I1,, I1), haifspace g, is not
necessary in H; we can remove it from H,, and then
consider the remaining halfspaces. When all halfspaces
in H, are tested, the set of remaining separating
halfspaces H; is necessary in H* =H, U H;. Therefore
we conclude that H* is both necessary and sufficient
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Figure 9. Only one of {h

. h-} is necessary to represent

S. Prime implicants h.h,hh,hih, and hh,hshihihe
represent the same shaded set S

3

for a CSG representation of S. This approach has been
used successfully by Shapiro and Vossler®.

With such a definition, the 'necessity’ of a halfspace
is not absolute but is dependent on the presence of
other separating halfspaces. For example, in Figure 9
neither h, nor h, is necessary in H={h,, ..., h.} for
a CSG representation of the shaded solid S, but hy is
necessary in {h,, ..., h,} while h, is necessary in {h,,
... hs, hy}. Thus the necessary set of halfspaces is not
unique, and we may look for a minimal set H:. The
complexity of this problem is not weil understood,
though it is easy to map it into a set cover problem
which is known to be NP-complete. A ‘greedy’
algorithm to minimize the size of H; is described in
Shapiro and Vossler®.

MINIMIZATION OF CSG REPRESENTATIONS

Types of minimization problems

Let us assume H = {h,, ..., h,} is a set of halfspaces
that is sufficient for CSG representation of a set S. A
CSG representation on H is not unique for S, and this
section is devoted to the problem of computing a
minimal CSG representation. A CSC representation of
S is minimal if any other CSG representation of S
involves an equal or larger number of regularized union
and intersection operations. Since k binary operations
operate on exactly k+ 1 halfspace literals, we may
alternatively state the problem in terms of number of
halfspace literals.

Given a set of halfspaces H that is sufficient to represent
a set S, construct ®(H) with the smallest possible
number of halfspace literals, such that S = |®].

Such a formulation of the problem precludes comparison
of CSG representations on distinct sets of haifspaces.
For example, we would not compare CSG representations
of the same solid S on different (but all sufficient] sets
of halfspaces shown in Figures 7(b)—(d). The relationship
between the number and type of halfspaces in H and
the size of the minimal CSG representation is not
known. O'Rourke gives an example where addition of
halfspaces that are not necessary to represent a
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polygon leads to a smaller size cover of that polygon™.
in other words, suppose H,, ..., H, are different sets of
halfspaces, each of which is sufficient to describe S,
and let H, be the smallest among them. (For instance,
the set of halfspaces in Figure 7(d) is the smallest
possible and contains only seven halfspaces.) It is
possible that a minimal CSG representation on H, is
larger than a minimal CSG representation on H, j #i.

For convenience we shall assume that H is a set of
halfspaces that is both sufficient and necessary to
represent S. Knowing that every h,e H must appear in
every CSG representation of a set S allows us to reduce
the CSG minimization problem to a problem of
minimizing a number of occurrences of every halfspace
h,. Ideally, we would like to compute a CSG
representation with every halfspace literal used exactly
once, but this may not be possible even for very simple
objects®.

Broadly speaking, the defined CSG minimization
problem can be viewed as an instance of multilevel
Boolean function minimization. The general problem is
discussed in Lawler”, where it is shown that a two-level’
Boolean minimization is an important special case of
the general problem. Both problems are known to be
NP. We consider both minimization problems for CSG
representations, after establishing an analogy between
CSG representations and switching functions.

Inclusion tests for CSG representations

Minimization of switching functions has been studied
extensively in the literature™*'. The pioneering work of
Pavlidis®> and O’Rourke® suggest that two-level
minimization techniques from switching theory may be
applicable to minimization of CSG representations.
Table 1 summarizes the correspondence between
general Boolean algebra, regular sets and regularized
set operations, and switching functions.

Inevitably, any minimization approach relies on the
ability to compare different Boolean forms using one
or more inclusion tests. By definition, for any two
elements aand b, a < b if and only if a-b=a.

A very special property of switching functions is that
there are only two possible elements: 0 (faise) and 1
(true). Thus, inclusion becomes formal implication, i.e.
{®,| implies | @, ] if and only if every truth assignment
that makes |®,| = 1 also makes | ®,] = 1. In particular,
when both @, and ®, are product terms, the implication
test reduces to a pure syntactic test: | @, | implies | @, |
if and only if every literal in ®, also appears in @,.

Broadly speaking, there is no analogous syntactic
test for CSG representations (but see O’'Rourke®).
Given two representations @, and @,, the only way to
determine whether | ®,| = |®,] is by a geometric test
that may be computationally expensive. We show now
that in order to perform inclusion tests on any number
of CSG representations @,, ..., @, defined on the
same fixed set of halfspaces H, the necessary geometric
computations need be done only once.

t By ‘two-level” we mean either sum of-products or product-of-sums
expressions
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Table 1. Boolean algebras

Switching

Boolean algebra  Regular sets (CSC) functions

Element
Addition +
Multiplication (-}
Complement x

Set of points in W Elemente {0, 1}
Regularized union U* Logical OR v

Regularized Intersection n*  Logical AND A
Regularized complement &  Logical NOT T

Inclusion Subset © Implication
0-element Empty set 0
1-element w 1

Suppose a set S is represented by a CSG
representation ®(H). There is a total of N non-empty
canonical intersection terms I1, in the partition of W
by H. Since S is describable by H, only two types of
such terms are possible.

¢ with all componentsin S, ie. [II?| < S
® with all components out of S, i.e |II}"| < S

Then the DCF for @ given by equation (3) represents
the unique decomposition for a set S defined by a CSG
representation on H. It provides a basis for comparing
any two CSG representations ®,(H) and ®,(H).

Given an arbitrary CSG representation ®(H) and the
disjunction canonical decomposition of W by H, it is
easy to compute the DCF of equation (3) for |®]. This
is achieved by performing a test |I1,| < | ®| for every
nonempty canonical intersection term I, k=1, ...,
N. 1t is shown in O’'Rourke®* that the latter test is
quite simple. Each TI, corresponds to a ‘truth
assignment’ in the following sense. Pick an arbitrary
point pe|Il,|. If peh, then assign h,=1; otherwise
assign h, = 0. Thus, a single point simultaneously and
uniquely assigns truth to all n halfspaces h,e H. Then,
the inclusion test reduces to a formal implication test

[T, | < {®]if and only if T, implies ®

in particular, when @ is a product of halfspaces, the
inclusion (implication) test is a syntactic procedure
identical to the one used in switching theory.

Consider now two CSG representations ®,(H) and
®,(H). Using the above procedure we can compute
sets |, | and |®,| in the DCF of equation (3). Then
the inclusion relation can be redefined in the following
fashion

Q.| <D,

if and only if

11, | € |, ] implies

ITL |, forall 1<k EN
So if all non-empty canonical intersection terms I1, are
known, any inclusion test (as well as the intersection

and the equality tests) reduces to a number of formal
implication tests.

Two-ievel CSG representations

We first consider minimization of sum-of-products, or
disjunctive normal form (DNF), CSG representations.

computer-aided design



By duality, similar results apply to the conjunctive
normal form minimization. This problem has been
partially addressed for polygons in Pavlidis* and
O’Rourke™. :

If a CSC representation is written as a sum of product
terms, but not every product term contains every
halfspace literal h,, we say that the representation is a
disjunctive normal form (DNF). A DNF is not unique
in the sense that many different DNFs can have the
same DCF. We say that a DNF is minimal for a set S
if there is no other DNF that represents S with a smaller
number of halfspace literals.

One DNF representation is immediately given by the
DCF of equation (3). For example, Figure 10 shows a
polygon whose CSG representation can be obtained
as S=1I1,+... +I1, or, using halfspaces H={a, b, ¢,
d e f},

S = (abédef) + (abcdef) + (abedef) + (abcdef)
+ (abcdef) + (3bédef)

While the above representation is easy to construct,
it results in a very inefficient CSG representation for S.
One of the reasons for this inefficiency is that a
canonical intersection term Il, is the most verbose
intersection representation for a set of components
given by [T1,{. The same set can be described by the
intersection of only those halfspaces that form the
boundaries of |I1,], leading to its minimal, or most
terse, CSG representation”. for example, I, = abc,
I, = abcf, and so on. Even more importantly, a number
of terms |T1, | could be subsets of a larger set P S S
formed by an intersection of some halfspaces in H.
Thus, for the polygon in Figure 10, IT,, IT;, and I, are
all subsets of P = jacef}.

DNF minimization is based on the notion of prime
implicants that are defined, for a CSG-represented set
S, as minimal CSC representations of the largest
intersection subsets of S. More precisely, ¥ is a prime
implicant of S if:

® Wisanimplicant of S, ie. ¥ =x,...x, x€{h, A}
and |¥| < S

O |W|=Ixx_ X x|ES Vx, ASi<k ie
when any halfplane literal x, is deleted, the remaining
product term is no longer an implicant of S

beaes
CUETITITTITS YITTTI
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Figure 10. Polygon $ = C, + ... + C, has a minimal DNF
using three prime implicants: § = | abf + acef 4 def|
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The set of all prime implicants is unique for a given S
and a set of halfspaces H, and their union is sufficient
{but not always necessary) to represent S. It is well
known that a minimal DNF is a sum of some implicants.
For the polygon in Figure 10, the set of all prime
implicants is: {abf, acel, def, ab¢é, dec, acdl, bcef, bedh,
ade}.

It was long believed that for polygons the minimal
DNF contains prime implicants formed by only positive
{uncomplemented) halfspace literals***, which could
significantly improve the computation. Indeed the
minimal DNF for the polygon in Figure 10 is given by

S = abf + acef + def

It was recently shown that this is not always true even
for simple polygons.

While procedures for computing prime implicants
may be adapted from switching theory***, and then
used for computation of a minimal DNF form??, they
may be inefficient, because they require many inclusion
tests, and because the number of prime implicants can
be very large. Figure 11 shows that even a simple 2D
polygon can have an exponential number of prime
implicants®®. (See also Aggarwal et al* for related
examples and discussion.)

For planar polygons, every prime implicant is a
unique representation of the polygon’s subset. However,
this is not true when H contains separating halfspaces
or additional halfspaces that are not necessary. Figure
9 shows an example where two separating halfspaces
h, and h, have been added to represent the shaded
figure (only one of them is necessary). Observe that
there are two distinct representations for the shaded
figure: h,h,hh,hh, and h,h,h h.hh,. Both are
minimal, therefore both are prime implicants.

kth group of two cusps

Figure 11. Each group of four edges of the polygon form
two ‘cusps’. A prime implicant is formed by choosing
one of the two cusps from every group. Therefore, there
is a total of 2™ prime implicants of this polygon
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Even if all prime implicants are computed, choosing
the smallest subset of them that covers the set S
requires an exhaustive search, and it is not likely that
more efficient algorithms can be found®. Many
algorithms that compute approximate minimal covers
are known, e.g. Miller”. One such algorithm has been
described and implemented by Shapiro and Vossler®.
Additional improvements in both the quality of the
computed cover and in the performance of the
algorithm can be achieved by taking advantage of
special prime implicants called ‘dominating halfspaces’
that commonly occur in solid models and are described
in the next section.

Dominating halfspaces

Suppose that a regular set S is describable by a set of
halfspaces H and for some halfspace g € H the following
condition holds

S=g+5 (8)

We then say that a halfspace g dominates set S, or
that g is a dominating halfspace. The following
statements are easily verified to be equivalent:

® halfspace g dominates set S

® g is a prime implicant of S

® ¢ appears in every canonical intersection term IT,
such that [IT,} < S

® g is a supporting halfspace of S, ie. S< g

The second property guarantees that there is a CSG
representation of S in which g appears only once, the
third property gives an efficient way to compute all the
dominating halfspaces of S, while the fourth property
gives an intuitive geometric interpretation of dominating
halfspaces and explains why they are a frequent
phenomenon in solid models of mechanical objects.

For example, consider a planar solid in Figure 12(a). - :

Halfspace e dominates S, while halfspace & dominates S.

We now show that if equation (8) holds, the CSG
minimization for S reduces to the CSG minimization
for S, < S on a smaller set of halfspaces H—{g}.
Furthermore, the DCF for S, is easily computed from
the canonical forms for S. Let us rewrite DCF of equation
(3) as

s=‘ f n§+§q: I
i=1

i=1

(9)

where TI¢ are all canonical terms with g, and IIf are
all remaining terms with g. Since g dominates S,
S=g+S Butg+Il¥=g and so

s=g+s=g+‘in§ (10)
i=1
Using De Morgan’s laws
8+H§=g+(h1 ... h,_.g=g+hy. .. h,_,
=g+nl‘ (11)

where II* is a canonical intersection term in the
partition of W by H— {g}. Combining equations (10)
and (11) gives

S=g+‘iﬂ§ =g+1iﬂ,‘ =g+5 (12)
=1 =1

Thus DCF for S, is obtained from DCF for S by deleting
from equation (9) all canonical intersections terms T1f
and dropping literal g from all remaining terms T18. This
is consistent with the fact that S, is describable by the

Figure 12.Solid S is completely represented by dominating expressions: 5 = lafe + ditb +¢))| = |e + adf (b + c)|:(a)
halfspace 3 dominates S, and halfspace e dominates S; (b) Decomposition using e: S= e+ T,; (c) Decomposition
using a: $=a- T,; (d) Decomposition using a and e simultaneously: S = ale + S,) = e + aS$,; (e) Decomposition of
S, with d and f: S, = df S,. Decomposition of S, with b and c: S,=b + ¢
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set of halfspaces H — { g }*. Figure 12(b) shows the result
of decomposition using dominating halfspace e
geometrically. _

Similarly, if a halfspace h dominates S we can write
S as

S=S=h+S,=hS, (13)

and the minimization needs to be carried out only for
S, 2 S, again with a smaller set of halfspaces H— {h}.
Such a decomposition is shown in Figure 12(c), where
halfspace & dominates S.

Absolutely minimal CSG representations

A minimal two-level CSG representation may not be
truly minimal as defined in the subsection, ‘types of
minimization problems’. For example, it is well known
that a polygon can be represented by a CSG
representation on halfspaces associated with its edge
so that every halfspace literal appears exactly once'™".
Yet, for the polygon in Figure 10, it is not possible to
construct a DNF with every halfspace literal appearing
only once.

A CSG representation @ is absolutely minimal if there
is no other CSG representation that represents a solid
S with fewer halfspace literals. It is shown by Lawler”
that every n-level minimal form is a sum or a product
of some (n — 1)-level minimal forms. Thus, in principle,
we can use two-level minimal forms to compute
three-level minimal forms, and so on, until an absolutely
minimal n-level form is obtained. Clearly, the amount
of required computation is prohibitive and we must
rely on approximate algorithms.

An absolutely minimal CSG representation of solid
S can be written in one of the following forms

'

S |@] =D 4. +D | =Dy ]+ ... + D,
=S1+...+Sm (14)

where ®@,, ..., @, are absolutely minimal forms for
some sets S, ..., S S S respectively, or a product

S=|0|=|®,... 0, =[O] ... D]
=5..." 5 (15)
where &,, ..., ®, are absolutely minimal forms for
some sets 5;, ..., S, < S. One approach to multilevel

minimization would be to recursively decompose 5
and/or S into a number of smaller, possibly overlapping,
subsets S,, ..., Sn, using some (heuristic) criteria until
absolutely minimal forms for every S, can be computed.

We focus on the number of times a halfspace literal
must appear in a CSG representation. If every halfspace
literal appears in a CSG representation of exactly one
set S, all sets S, can be represented by disjoint sets of
halfspaces. In this case we say that set S admits a

tNote that decomposition S=g+$5, may not be unique,
because terms IT¥ covered by g specify ‘don’t care’ conditions for
minimization of S,
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symbolically disjoint decomposition into subsets S,
given by equation (14). A symbolically disjoint
decomposition is a locally optimal way to subdivide
the CSG minimization problem for S. Suppose we could
always find a symbolically disjoint decomposition, i.e.
not only for S, but also for every one of S, = S, and for
every subset of S, and so on. Then we would compute
a CSG representation of S with every halfspace literal
appearing exactly once (recall that every halfspace h; is
also necessary by assumption). Such a representation
is absolutely minimal by definition.

It is not difficult to show that a set S admits a
symbolically disjoint decomposition 5§ =S, + S, if and
only if S =¥, + ¥, |, where ¥,, ¥, are sums of prime
implicants of S and every halfspace h € H appears only
in either ¥,, or ¥.2 but not both. This result can be used
to show that symbolically disjoint decompositions
always exist for a large class of linear polygons, while
they do not exist for many curved planar solids. It can
be also used as a basis for a heuristic algorithm that
performs a multilevel CSG minimization using recursive
decomposition®. We conclude this section by showing
that sometimes an absolutely minimal CSG representation
can be constructed based solely on the presence of
dominating halfspaces introduced above.

Dominating expressions

According to equation {12), identifying g as a
dominating halfspace corresponds to performing a
special case of symbolically disjoint decomposition. The
following proposition shows that we can take advantage
of halfspaces dominating S and S simultaneously, and
in any order.

Proposition: suppose a halfspace g dominates S and a
halfspace h dominates S. Then S=g+(h-Sy)=h-(g+5,),
where S, is describable by H—{g, h}.

Proof: let us use the decomposition of S, i.e. S=h" A,
Then S € A. Thus a halfspace g (that dominates S) also
dominates A. Therefore A =g+ S,. Substituting in
expression for S, we get S = A+ (g +S,) = hg + hS,. But
hg = g, because g < h. (To see this, observe that g &5
and S < h) Thus the expression for S reduces to
S=g+h-5,. O

The result is demonstrated in Figure 12(d), where we
have used halfspaces e and a simultaneously. The above
proposition can be generalized further. Suppose G, is
a set of m halfspaces that dominate S, and G, is a set
of | complements of halfspaces that dominate S. Then

S=|g:®E®(..D[E, ®S)..N] (16)

where @ = (+) if it follows g,€G,, or @ =(-) if it
follows g eG,, n,=m+/, and gs are taken in an
arbitrary order. The right hand side of equation (16)
consisting of a string of the dominating halfspaces and
@ operators is called a dominating expression.
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Consider now the remaining minimization problem:
compute a minimal CSG representation for S; using
only halfspaces from H— (G, u G,). It is possible that
there are halfspace that do not dominate S (or S) but
dominate S, (or S,). In this case, S, in equation {16) can
be decomposed further using its dominating expression.
In our example, halfspaces f and d dominate S, (Figure
12(d)) but are not dominating in Figure 12(a). Now the
CSG minimization problem for S, has been reduced to
a yet simpler CSG minimization problem for S, on a
smaller number of halfspaces, and so on. Figure 12(e)
shows the further decomposition of S, into product of
halfspaces d, f and a set S,.

In the sequence of the CSG minimization problems
for So, Sq, ..., S, with S=5;, S, _, is always a simpler
minimization problem than S, is. The sequence can
terminate in several ways. If S,;= &, or §;=W, the
dominating expression is a minimal representation of
S with every halfspace appearing exactly once. This is
the case in the example of Figure 12, where halfspaces
b and ¢ dominate S, (Figure 12(e)), and S, = (F. At
other times, a symbolically disjoint decompoasition of
S, or S, into smaller subsets could reveal additional
dominating halfspaces. However, in general, if neither
of these special conditions apply, we still have to carry
out the CSG minimization for S; as described in the
previous subsection.

CONCLUSIONS

Summary

We have considered issues in the construction and
optimization of CSG representations of closed regular
sets that are given by their boundaries. We have shown
that the B-rep to CSGC conversion problem is well
defined in the partition of W induced from the natural
halfspaces of a set S. The Describability Theorem
establishes the necessary and sufficient conditions for
the existence of CSG representations for a fixed set of
halfspaces H and a set 5. A new approach to B-rep to
CSG conversion was proposed in the third section
based on the construction of separating halfspaces. The
resulting canonical CSG representation is unique for a
fixed set of halfspaces. We also discussed the problem
of minimizing the set of halfspaces that are necessary
and sufficient for a CSG representation of a set S. The
fourth section demonstrated that Boolean minimization
techniques can be used effectively to compute minimal
or at least efficient CSG representations. It is important
that, once the disjunctive canonical decomposition of
W is known, no additional geometric computations are
necessary.

In principle, the described techniques collectively
represent a complete solution to the general B-rep to
CSG conversion problem, as well as the problem of
CSG minimization. The proposed methods apply to
simply- and multiply-connected, manifold and non-
manifold solids. A companion paper® describes, in
detail, a fully implemented solution of the B-rep to CSG
conversion based on this approach.
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Geometric computations

Throughout the paper we have assumed that a
partition of W by a set of halfspaces H can be computed
and is available as needed. This task is straightforward
if H is a set of linear halfspaces, and is doable if H is a
set of quadratic halfspaces. The problem becomes more
difficult if H contains higher order halfspaces because
practical methods to compute surface-surface inter-
sections are limited (for a recent survey see Hoffmann*).

We observe that, except for the test-based separation
described in subsection, ‘strategies for separation of
components’, boundaries of components C,,, , are not
required for any of the algorithms described in this
paper. As we pointed out earlier, points that are in the
same component C,,, constitute an equivalence class.
Thus for the purpose of testing the describability of a
set, a component is completely represented by any
single point in its interior. Similarly, for the purpose of
the CSG minimization, a canonical intersection term
I, is completely represented by a single point from
some component C,,, < |II,|. While in theory
computing a point in every -cell of a cellular
decomposition of W may not be easier than computing
the boundaries of every cell, alternative practical
methods to do so can be developed under relatively
mild assumptions about halfspace intersections. For
example, an algorithm based on offset halfspaces has
been implemented® and can be generalized to higher
dimensions.

The only other required geometric computations are
classification of a component C,,, against the B-rep
of a set S and classification of a canonical inter-
section term |II,{ against a CSG representation
of a set S. Both tests reduce to a point membership
classification (PMC) test. The PMC test may be difficult
if the point in question lies on the boundary of one or
more halfspace in H, because one must deal with
various ambiguities if S is represented in CSG™, or face
numerical robustness issues if S is given by its B-rep®.
Here, however, we are only interested in points lying
in the interior of components. Such points can only be
in or out of any set S satisfying condition (7). Thus, the
PMC test against a B-rep can be performed in a relatively
straightforward manner by casting a semi-infinite line
from the point in question and counting the number
of times the line intersects the B-rep. The PMC test
against a CSG representation reduces to a simple
syntactic procedure described in the subsection,
‘inclusion tests for CSG representations’.

Future work and open issues

The problem of constructing a sufficient set of
separating halfspaces must be resolved in particular
settings. i.e. for particular classes of natural halfspaces.
For example, in Shapiro and Vossler® we solve the
problem for planar solids bounded by edges that are
subsets of convex or concave curves. We are currently
working on construction in E> which is much more
challenging and is likely to require results from aigebraic
geometry. Studies of the separation properties of the
natural quadratic halfspaces (ie. planar, conical,
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cylindrical, spherical halfspaces) have yielded enough
understanding to enable us to build an experimental
system that converts natural-quadric B-reps in
PARASOLID to efficient CSG representations in PADL-2.

We have not addressed any computational complexity
issues in this paper. It appears that exact solutions of
all minimization problems will require an exhaustive
search leading to exponential time algorithms. Thus
further development of heuristic and output-sensitive
algorithms is important.

Except for linear polygons, little is known about the
size of minimal CSG representations. An example in
Dobkin et al.™ shows that a CSG representation for
some linear polyhedra in £ must use a halfspace more
than once, but no lower bound on the minimal size is
known. Similar limited results are available for curved
planar objects®. Establishing the relationship between
the number and degree of halfspaces in H and the size
of a minimal CSG representation for a set S is another
challenging problem that is not well understood.

Finally, the existence of unique CSG representation
for solids opens new opportunities for development of
alternative algorithms to perform solid comparison,
interference detection and boundary evaluation. It also
establishes a fundamental link between solid modelling
algorithms and arrangements in computational
geometry.
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